Nutrient, water, and soil type mangement of biofuel feedstock production by corn, sorghum, and switchgrass

PhD Dissertation:

Roland Ahouelete Yaovi Holou (2010). Nutrient, water, and soil type mangement of biofuel feedstock production by corn, sorghum, and switchgrass. University of Missouri–Columbia (USA). Degree Doctor of Philosophy In Plant, Insect, and Microbial Sciences (Plant Biology and Genetics).

Dissertation Main Advisor: Prof Gene Stevens, 

Co-Advisor: Prof Bill Folk

PDF of the  PhD Dissertation
ABSTRACT: Efficient use of biomass to produce biofuel and the development of more drought tolerant crops can contribute to helping address current and future problems faced by mankind, and are the focus of this dissertation. Objectives of experiments done in Portageville, Missouri, from 2007 to 2009 were to: (1) determine the effect of nitrogen (N) fertilization rate on the grain yield, the content and yield of oil, protein, starch, and the nutrient removal by corn; (2) determine the effect of N fertilization rate and the soil type on the biomass, juice, bagasse, sugars yield, and the nutrient removal by sweet sorghum; and to (3) determine the best date to harvest switchgrass in order to maximize biomass production with minimum nutrient removal. We found that in contrast to sweet sorghum, corn required 179 to 224 kg N ha-1 for maximum corn grain yield. Sweet sorghum mostly responded to N fertilization only on clay soil; loam and sand soils had enough N when planted in a cotton/soybean rotation. However, the soil type and N rate highly impacted a variety of sweet sorghum yields, with the optimum yield recorded with 67 kg N ha-1 if sweet sorghum is grown after soybean or cotton. N fertilization changed the oil, protein, mineral, and carbohydrate composition of the corn kernel. In general, the increase of N fertilization rate increased the grain yield and also the uptake of most nutrients, suggesting that nutrient removal will be critical for biofuel production from corn. The nutrient removal by sweet sorghum significantly depended on the year, soil type and N rate. The return of the leaves and the bagasse to the soil significantly reduced the nutrient removal by sweet sorghum. In general, the loam is the best soil type to produce corn and sweet sorghum in order to maximize biomass, and carbohydrates yield, and consequently biofuel production.
Switchgrass cv. Alamo produced twice the amount of biomass as the Blackwell cultivars. From July to November the nutrient uptake in the aboveground biomass decreased and their sink was successfully determined. Harvesting switchgrass biomass in late November is appropriate to minimize the nutrient removal, maximize biomass yield and reduce the biomass drying cost.
Experiments performed in Columbia, MO, focused upon beginning to measure the root and the leaf responses of sorghum varieties Tx7000, Tx642, RTx2817, Px898012, and M81E compared to a well-studied corn variety, FR697 to limiting water. Using two systems modeled after the work of Dr. R. Sharp and colleagues, we found significant differences across the varieties. Drought stress significantly reduced the biomass yield and changed the morphology of the roots, suggesting that it can significantly impact the biofuel production from these crops. A combination of the change in the root protein content and the leaf and root lengths correlated with the drought tolerance of the varieties studied.


“Sorghum: Properties, Synthesis and Applications”, Book Edited By Prof Valentin M. Kindomihou at Nova Science Publishers, in New York, USA


The applications of sorghum, which have significant impacts on human and animal development, have recently increased. This book includes chapters derived from original research and the synthesis of current knowledge on specific topics in the field. It is an original collection of research findings or summaries of articles from around the world that are part of discussions on the status of sorghum and its applications in various areas of development. This volume addresses physiological, ecological, functional and genetic foundations of sorghum through the examination of theories and case studies that explain various properties, synthesis and applications. The chapters address, respectively, sorghum attributes, heterosis association and molecular mapping for grains traits, ecophysiology, reproductive competence, molecular mechanism of flowering time control, sensory and nutritional properties, mechanisms involved in allelochemical biosynthesis, and applications of bioactive compounds, i.e., polyphenolic and acidic phenolics.

This book offers essential approaches including: (i) A generic and rapid way to combine the diversity of single nucleotide polymorphisms with heterosis, which facilitates the dissection of the molecular mechanisms underlying the quality and quantity of grains in an important sorghum crop; (ii) the principles and processes of extrusion in order to obtain grains of good sensory and nutritional characteristics; (iii) the indicators in assessing the role of sorghum as a source of energy in the productivity of poultry farming systems; and (iv) some characteristics of root and foliar responses to water stress of a genotype amenable to genetic modification. It also makes a sweeping analysis concerning the progress of current research in the floral transition of sorghum and the photoperiod response.

The final chapter highlights the importance of bioactive compounds of sorghum species, mainly in fighting diseases related to human nutrition. Case studies from around the world were reported, giving readers a real view of the extent of sorghum properties along with real-world applications. This book can be used as a reference for students, scholars, professionals and political decision-makers involved in the study and management of sorghum.

This book gives to readers a real view of the extent of sorghum properties along with real-world applications strategies. It provides references to students, scholars, professionals and political decision- makers involved in the study and management of properties, synthesis and applications of sorghum.

Table of Contents


Chapter 1. Properties, Synthesis and Applications of Sorghum: The Manna behind the Rustic?
(Valentin Missiakô Kindomihou, Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin)

Chapter 2. Heterosis Association Mapping for Grain Quality and Yield Related Traits Quantity in Sorghum Bicolor Diallel Implicates the Prevalence of Dominance Complementation
(Imri Ben-Israel, Dhruv Aditya Srivastava, Chengsong Zhu, Habte Nida, Jianming Yu, Eyal Fridman, Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel, and others)

Chapter 3. Characterization of the Root, Biomass, Leaf, and Protein Content of Sorghum (Sorghum bicolor L. Moench) and Corn (Zea mays L.) Grown under Two Different Water Conditions
(Roland A. Yaovi Holou and Valentin M. Kindomihou, Biochemistry Department, University of Missouri, Columbia, MO, US, and others)

Chapter 4. Photoperiodism and Control of Flowering Time in Sorghum
(Tezera W. Wolabu and Million Tadege, Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, OK, US)

Chapter 5. Physicochemical and Nutritional Properties of Whole White Grain Sorghum Extruded under Different Extrusion Conditions
(Emilce E. Llopart and Silvina R. Drago, Instituto de Tecnología de Alimentos, CONICET, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina)

Chapter 6. The Use of Sorghum as an Energy Source in Poultry Diets
(Monnye Mabelebele, Rob Mervyn Gous, Helen Victoria Massey O’Neil and Paul Ade Iji, University of South Africa, College of Agricultural and Environmental Science, Florida Campus, Rooderport, Johannesburg, South Africa, and others)

Chapter 7. Applications of Bioactive Compounds from Sorghum Species
(Monica Butnariu and Alina Butu, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timis, Romania, and others)


Book Inquiry Form

Sorghum: Properties, Synthesis and Applications

About the Author

Valentin M. Kindomihou, Ph.D. (ULB-Belgium, 2005) is applied ecologist and Associate Professor of Animal Production and Agrostology at The UAC (Benin), holding an Agricultural Engineer degree (Benin, 1995), MBA in Environmental Management (Niger, 1999), MS in Plant Ecology and Evolutionary Genetics (Belgium, 2001) and Matsumae International Foundation Postdoctoral Fellow’ Medal (Japan, 2006). His main field research is Grass and Forage Science while teaching courses including Forage Management and Ecophysiology, Agroforestry for Animal Production, Ecological Foundations and Environmental Issues for sustainable development, and Methods for studying Animal Breeding Systems. His research had resulted in over 75 publications. To learn more, visit:

About the Publisher, Nova Science Publishers, Inc.

Founded in 1985 in New York, Nova Science Publishers, Inc. has become one of the leading STM (Scientific, Technical, and Medical) publishers worldwide. Their publications include printed (hardcover and softcover) and electronic Books, Journals, Conference Proceedings, Handbooks, Encyclopedias, Edited Collections and Series Collections. Currently, NOVA publishes over a thousand new books every year by scientists from the top universities and colleges from around the world.

NOVA has remained at the forefront of academic publishing as a company that embraces the best practices and technology to deliver unique science books, journals, series and eBooks. Their transition into the exciting world of online publications was a seamless and natural integration, an extension of their vision to publish the best works by outstanding scientists worldwide, and to make them accessible to as many people as possible.

Nova publishes a wide array of books and journals from authors around the globe, focusing on Medicine and Health, Science and Technology and the Social Sciences and Humanities. They publish over 1,500 new titles per year by leading researchers each year, and have a network of expert authors, editors and advisors spanning the global academic community in pursuit of advanced research developments.

NOVA has representatives, agents and distributors in virtually every country. They distribute review copies upon request, provide advertising for academic journals, are featured in specialized catalogs and are present at trade shows internationally, including the London, Frankfurt and Beijing Book Fairs, as well as many US and international academic book events.

The Nova Science Publishers Team values and continues to develop their long term cooperation with leading and respected authors and experts from from around the world, particularly in the academic community. They are proud to have been the second most multidisciplinary publisher in the World based on the BKCI Coverage from 2005 to 2012.

As NOVA continues to cross milestones with new discoveries, their commitment to serving the world academic community has remained unchanged from the day of inception thirty three years ago.

For more information on Nova Science Publishers’ latest ranking, please click on the image below.


To Contact the Publisher, NOVA SCIENCE PUBLISHERS, INC.


Nova Science Publishers, Inc.
400 Oser Avenue, Suite 1600
Hauppauge, NY, 11788 USA

Tel: 1-631-231-7269 (Main Office)
Tel: 1-631-299-0024 (Billing)
Fax: 1-631-231-8175